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Applying an external field to the Lorentz gas model, and thermostating it to maintain a constant kinet-
ic energy, we study the conductivity as a function of the field. For small fields the system is ergodic and
the diffusion coefficient is well defined. At larger values of the field, ergodic behavior disappears and we
observe a variety of possible dynamics, including the existence of a single stable trajectory for the largest
fields. At intermediate values of field a series of transitions between ergodic, periodic, and nonergodic
behavior appears. We present a detailed dynamical study of the breakdown in ergodic behavior.

PACS number(s): 05.45.+b

I. INTRODUCTION

There has been a recent increase in interest in the study
of the Lorentz gas model originally proposed in 1905 [1].
Much of this interest has been due to the use of this mod-
el as a test case for the study of periodic orbit expansions
and the Ruelle {-function based cycle expansions [2-5].
However, there is still much interest in understanding
this simple nontrivial model from a fundamental statisti-
cal mechanical point of view. The model dynamics is
completely reversible, yet the system displays irreversible
behavior with a well defined diffusion coefficient. Under
the application of a small external field and thermostat,
the Lorentz gas has a steady average current, and the ra-
tio of this current to the applied field is equal to the
diffusion coefficient in the small field limit. These results
are essentially numerical observations. The only rigorous
mathematical result is that starting from any initial den-
sity, absolutely continuous with respect to the Liouville
measure [e.g., f(q,p)dqdp, where f is an integrable
function], a unique stationary, multifractal, ergodic mea-
sure is approached as time goes to infinity [6]. This result
holds for small enough external fields while, at larger
fields, a loss of ergodicity is expected; as yet, there has
been no quantitative estimate of the value of the field at
which the transition from ergodic to nonergodic behavior
occurs. To establish a breakdown of ergodicity we re-
quire that there exist at least two disjoint regions, of posi-
tive Lebesgue measure, such that an initial condition in
one region can never evolve dynamically to the other
(even under the action of periodic boundary conditions).
In this case, in fact, the natural measure of the system is
decomposable, i.e., nonergodic. If the system is ergodic,
ensemble averages taken over the accessible phase space
in the stationary state equal time averages for almost all
trajectories. This happens, for instance, when almost all
initial conditions in phase space evolve towards the same
attractor. For the Galton board there is some numerical
evidence to suggest the existence of stable cycles of 20 or
fewer collisions at large fields [7], but no systematic stud-
ies exist. Moreover, the existence of stable cycles does
not necessarily imply a breakdown of ergodicity, as such
orbits could be the only attractors in the phase space,

1063-651X/94/50(5)/3416(6)/$06.00 50

thus verifying the ergodic hypothesis. This is the case,
indeed, in our model for large enough values of the exter-
nal field.

The modified Lorentz gas (with regularly arranged
scatterers) consists of an infinite two-dimensional triangu-
lar lattice of hard scatterers with a single point particle
wandering through the lattice. The wandering particle
experiences simple hard core collisions with the scatterers
as it moves. In the absence of a field the energy and the
kinetic energy are constants of motion. As a result the
speed of the wandering particle is constant, so the
momentum has only one degree of freedom: its direction.
Therefore we can write p=(p,,p,)=p(cos0,sinf) where
6 is the angle between the x axis and the momentum vec-
tor. If no external field is applied, the trajectory of the
wandering particle consists of straight segments of line.
It is more convenient to represent the position in polar
coordinates, so (x,y)=r(cos¢,sing). (See Fig. 1.) The
thermodynamic state point of the Lorentz gas has been
characterized in terms of the disk spacing w, so if d is the
distance between the centers, then w =d —20. In what
follows we take the radius 0 =1. For a range of values of
the spacing, the Lorentz gas has an infinite horizon (that
is, for some initial conditions it is possible to pass
through the whole lattice without a collision). To avoid
the subsequent difficulties with the definition of the
diffusion coefficient we choose the spacing sufficiently
small so that the horizon is finite, that is, w <4/V3-2.
Here we shall consider the spacing w=0.2360685,
which has been studied previously [3,5,7].

The equations of motion for the Lorentz gas in an ap-
plied external field f, in the x direction with an isokinetic
thermostat are given by

x:px’ px:f‘x_j‘e—apx > (I
y=p,, p,=F,—ap,.

As the speed p of the wandering particle in the Lorentz
gas is unity, and we take its mass M, to be unity, then the
isokinetic temperature is given by kT =1 (in the limit of
vanishing field, the kinetic energy equals the total ener-
gy). For the constraint of constant kinetic energy we find
that
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FIG. 1. The geometry of the Lorentz gas. For the scatterer
at collision, the polar angle ¢ gives the position, while 0 gives
the angle between the momentum vector and the x axis. The

system is parametrized by the ratio w /o, where w is the spacing
between scatterers.

_ p-F—fep.
a=—3
p
Changing to polar coordinates we find that
0=esind, where e=f,/p . (2)

Integrating the equation of motion for 6, we find that in
time ¢, 6, evolves to 8, where

tan(0,/2)=tan(6,/2)e* . (3)

Integrating the equations of motion for the coordinates

we find that in the same time, the changes in x and y are

given by

Singl p(el—OO)
dy,—yo=——— . 4

and y;—Jo Me C))

xl—x0=—1‘%ln

sinf,

In this study, we take the direction of the field to be
parallel to the x axis, and the x axis to be parallel to one
of the vectors joining nearest neighbors in the triangular
lattice. This differs from some previous work [3,7] where
the x axis was taken to be parallel to the vector joining
second nearest neighbors.

II. THE BIFURCATION DIAGRAM

The Lorentz gas can be considered as a mapping rather
than a continuous flow, by considering the elementary
cell (the hexagon surrounding the central scatterer) and
choosing the surface of the scatterer as the Poincaré sur-
face of section. A point on the Poincaré surface is
uniquely defined by specifying ($,0). A trajectory of n
collisions is equivalent to specifying the values of (¢,0) at
each of the collisions. The mapping from collision to col-
lision is

(¢n+l’9n+l)=F(¢n’9n)’ (5)

where F is defined implicitly by the integrated equations
of motion. To characterize orbits in this model we make
use of a form of symbolic dynamics, introduced previous-
ly [2,4,5]. This symbolic dynamics attaches a symbol (a
number between 0 and 11) to each free flight of a trajecto-
ry. Each even number represents a free flight to a nearest
neighbor, while an odd number is a flight to a second
nearest neighbor. The labels are ordered counterclock-
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wise to first and second nearest neighbor scatterers begin-
ning with O for the nearest neighbor scatterer on the x
axis.

Here we wish to study the behavior of this mapping as
a function of the applied external field. In order to visu-
alize the behavior we can consider two projections of the
mapping. These are the projections onto the ¢ axis and 6
axis, respectively. We find that both projections have the
same dynamical features, thus we concentrate onto the 6
projection only. In particular, we observe a quite com-
plex structure which closely resembles the bifurcation di-
agram of one-dimensional dynamical systems.

In Fig. 2 we present the upper half of the projection of
the bifurcation diagram onto the 6 axis, obtained by
direct iteration of a few initial conditions, ignoring the in-
itial transient behavior (= 10 collisions). The other half
of this diagram is trivially obtained by reflection with
respect to the 6=0 line. The feature of this diagram is a
series of dramatic changes in the pattern of the iterates of
the mapping. For fields of 2.1 or less the iterations of our
initial condition sample most of the phase space, whereas
at fields of 2.64 the iterations settle onto a stable orbit of
length 2 (collisions) with symbol string (4 8), shown in
Fig. 3. With increasing field the curvature of the orbit in-
creases, and the orbit has multiple bounces on each
scatterer, eventually approaching an orbit very similar to
the creeping-flow trajectory observed in a related model
[8], which is made of horizontal straight lines and arcs of
circumference. It is interesting to note that the diffusion
coefficient—as given in Ref. [3]—converges to zero in

FIG. 2. The upper half of the bifurcation diagram for the
discrete mapping F(¢,0) as a function of field ¢, projected onto
the (g,0) plane. This diagram is symmetrized by mapping
(—68)==06. Above £¢=2.64 there is a single line which is the
stable (4 8) length-2 orbit, which then becomes a stable length-8
orbit. After that there are chaotic bands interspersed with
periodic windows. The separated feature at 2.3 <€ <2.46 is one
example of the neutrally stable elliptical orbit (4 10)~.
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FIG. 3. The stable length-2 orbit (4 8) at e=2.7. As the field
is in the negative x direction, the wandering particle moves
from right to left.

this limit. We now concentrate on the range of fields
2.1<e<2.64, where significant changes in the bifurca-
tion diagram occur.

As the field decreases, the curvature of the orbit de-
creases, and the two free flights both develop zero-effect
glancing collisions when €=2.64. Any further decrease
in the field prunes the (4 8) orbit (in the sense that it is not
physically realizable). As the scatterer surfaces are con-
vex (hence defocusing), each additional collision intro-
duces more instability into the orbit, because close points
tend to diverge from each other more and more at every
collision event. So a transition from a length-2 to a, say,
length-4 orbit is likely to produce a markedly more unsta-
ble orbit. What actually happens in our Lorentz gas
model is that dynamical stability favors introducing as
few as possible new collisions per free flight, so that the
new stable orbit, which emerges from reducing the field
to values slightly below 2.64, consists of taking three
sequential copies of the original length-2 orbit and intro-
ducing only two extra collisions. The length-8 orbit so
formed is the most stable possible structure [see Fig.
4(b)], which is obtained by introducing on average only
of a collision per single free flight of the old length-2 or-
bit. Such a length-8 orbit consists of four free flights, fol-
lowed by the mirror image (in the x axis) of the same four
free flights. [See Figs. 4(a) and 4(b).]

In the bifurcation diagram (Fig. 2), this information is
expressed by the fact that each of the original two points
of the stable (4 8) orbit splits into three different points,
while two new points are generated, as the field is lowered
from higher to smaller values than 2.64. This breaks the
symmetry of the orbit obtained by pasting together three
copies of the original (4 8). The two new points that
emerge represent the two new collisions, they lie on the
two new lines which start at a field of about 2.64 not
branching from any other line. Clearly, although the bi-
furcation diagram in Fig. 2 seems reminiscent of those for
one-dimensional maps, the mechanism at work is quite
different. As the field is decreased, the free flights of the
stable length-8 orbit become less curved, eventually inter-
sect a scatterer, and the orbit is pruned. The stability of
the orbit decreases continuously as the field is lowered

JAMES LLOYD, LAMBERTO RONDONI, AND GARY P. MORRISS 30

(b)

FIG. 4. Three copies of the stable length-2 orbit (4 8) just be-
fore it is pruned at e=2.64. If the field is decreased further, the
curved part intersects the scatterer. (b) The same as (a) except
that the field has been reduced further, ¢ =2.625, and the stable
length-2 orbit has been pruned. It is replaced by a stable
length-8 orbit (2 6 8 4 10 6 4 8) which is similar to the three
copies of (4 8) but has two extra collisions.

from values close to the pruning point, and at a field
slightly above the pruning value, the orbit turns unstable.
At this point the dynamical system adopts the next most
stable behavior, which could be another regular orbit or a
chaotic one.

However, some interesting phenomena take place be-

FIG. 5. A very complicated structure of chaotic bands and
interspersed periodic windows containing further bifurcations.
Because of the small magnitude of the Lyapunov exponents in
the chaotic bands it is not possible to eliminate the possibility
that these are long chaotic transients.
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FIG. 6. A version of Fig. 5, where only one initial condition
is used at each value of the field. This shows that the false bifur-
cation at €=2.509 is a transition from a symmetric length-28
orbit to two asymmetric length-28 orbits. Using only one initial
condition we obtain only one of the asymmetric orbits, thus the
bifurcation appears to be one sided.

1
2.505 2.51

fore the length-8 orbit is pruned. In particular, an en-
largement of the range 2.505 <& <2.522 reveals a very
complex structure made of several different chaotic re-
gions separated by macroscopic ranges of periodic dy-
namics, and finely interspersed with periodic windows of
small, as well as large, periods (Fig. 5). For values of the
field in this region, and smaller, there is a clear window of
regular behavior (2.49 <€ <2.507) which begins with a
symmetric stable cycle of length 16. The next change in
behavior would appear to be a bifurcation to a cycle of
length 32, at about 2.495. However, closer examination
reveals that the relevant points in phase space really refer
to two distinct, asymmetric cycles of length 16. The one
we observe depends upon the initial condition. Thus we
have a false bifurcation, through which the period of the
orbits remains unchanged, while their number doubles.
The same happens at £~2.5092, and Fig. 6 shows what
Fig. 5 would look like if only one initial condition is used
at each value of the field. (A more complete description
of the behavior of the system will be published elsewhere

[9])
III. THE ORBITS

To understand the bifurcation diagram at fields smaller
than those considered in Sec. II, it is helpful to consider
the behavior of some of the shortest orbits. The simplest
are the short-flight orbits of length 2. The orbit (0 6) is
unstable, and as it is parallel to the field its shape is un-
changed with increasing field. The (4 10) orbit, however,
does change in shape and stability, with increasing field.
Both of the collisions in this orbit are normal (.e.,
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6=¢=+7) so the orbit can be completely characterized by
the knowledge of two angles only. The (4 10) orbit is un-
stable for fields in the range 0 <& <2.46, but for values in
2.3<e<2.46 there is a second initial condition which
gives rise to a different (4 10) orbit with vanishing
Lyapunov exponent. Around this point there is a contin-
uum of initial conditions each of which begins a distinct
orbit in phase space, whose collision points fill up a dis-
tinct ellipse when drawn in the (¢,0) plane (see Fig. 7).
The presence of elliptic rather than hyperbolic trajec-
tories, in phase space, shows that there are values of the
field for which the hyperbolicity properties of the
Lorentz gas are lost. Moreover, we observe that all of
these elliptic orbits have symbol string (4 10)* where the
superscript stresses that the same symbol sequence is re-
peated indefinitely without closing. This illustrates two
features of the model at such fields. First, a single symbol
string (in the usual 12-symbolic dynamics) does not neces-
sarily correspond to a unique orbit. Moreover, the prob-
lem cannot be solved by partitioning the surface of the
scatterers into a finite number of pieces, and assigning a
different symbol to each piece. Indeed, for a symbolic dy-
namics to be able to assign a single orbit to a given sym-
bol, in this case it is necessary to have infinitely many
partitions and infinitely many symbols. The second in-
teresting feature is that the behavior of an orbit is strong-
ly dependent on the initial condition, which leads to loss
of ergodicity. Indeed, we see in Fig. 7 that the fraction of
phase space covered by elliptic orbits has positive Lebes-
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FIG. 7. A plot of the full (¢,0) plane at €=2.43 for a series
of initial conditions near the neutrally stable (4 10) orbit.
Around this point there is a continuum of initial conditions,
each of which produces a distinct neutrally stable elliptical orbit
(4 10)*, centered about the neutrally stable (4 10) orbit. In the
inset, the small squares represent the initial conditions, while
the other points represent their time evolution. Five of the ini-
tial conditions give elliptical orbits while the outer one gives a
chaotic orbit.
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gue measure, and that the orbits starting outside that re-
gion eventually settle down on what appears to be a
chaotic attractor. Thus e=2.3 is an upper bound for er-
godicity.

In Fig. 7 there should also be elliptical orbits from the
symmetry related (2 8) orbit. These extra (¢,0) plane
contributions will be the same as those from the (4 10)”
orbit reflected in the line 6= —¢, however, their regions
of existence are disjoint, and do not overlap with the
basin of attraction of the chaotic orbit. Figure 8 is a plot
of the possible initial conditions for the length-2 (4 10) or-
bit as a function of the field. On the upper branch of the
curve, 1.575 <¢,<2m/3, there are the initial conditions
which lead to unstable orbits, while the lower branch of
the curve, 1.2 <¢,<1.575, leads to neutrally stable or-
bits. For 2.3 <€<2.46 a region of coexistence occurs
where both unstable and neutrally stable orbits are possi-
ble. Figure 9 shows the unstable, and the stable (4 10) or-
bit, along with the critical angle at which the two orbits
coincide. It is interesting to note that the orbit disap-
pears at a field of 2.46, not because it intersects a scatter-
er, but because there are no solutions to the trajectory
equations consistent with normal collisions at each
scatterer. We refer to this as orbit disappearance.

Another region where ergodicity is lost is for values of
the field between 2.5061 and 2.507, where stable orbits of
length 8 and length 16 coexist. Thus whether the long
time evolution of a given point in phase space will be cap-
tured by the one or the other orbit depends upon the ini-
tial condition. Again, the natural measure can be decom-
posed in at least two ergodic measures, and it cannot it-
self be ergodic. Also, around €=~2.506 09, the stability of
the length-8 orbit changes, as its Lyapunov number
grows from negative to positive values continuously as a
function of the field. This orbit remains unstable until
the field is so small that two of its free flights intersect a
scatterer, and the orbit is pruned.

orbit (4 10)
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FIG. 8. The possible initial conditions for (4 10) orbits as a
function of €. For £ <2.3 there is a single unstable initial condi-
tion. For 2.3<g£<2.46 there are two initial conditions, the
upper one unstable and the lower one neutrally stable.
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FIG. 9. The full range of possible (4 10) orbits as a function
of €. The orbit marked (1) is the e =0 orbit; the orbit marked (2)
is the limiting unstable orbit at € =2.46; and the orbit marked
(3) is the small field limit for the neutrally stable orbit at e =2.3.
Any (4 10) orbit between (1) and (2) is unstable and moves to the
right with increasing field, while any orbit between (2) and (3) is
neutrally stable and moves to the left with increasing field.

IV. CONCLUSIONS

In summary we have seen four mechanisms that lead to
changes in the bifurcation diagram with changes in the
value of the field, not all of which have been found before
in maps of the interval; (1) change in the stability of an
orbit (the length-8 orbit at e ~2.50609), (2) pruning of an
orbit by a scatterer (length-2 goes into length-8 orbit), (3)
disappearance of an orbit (the (4 10) at e~2.48], and (4)
orbit doubling (the bifurcation with no change in period
at £=~2.5092). It is interesting to note that the stability
of a given orbit usually decreases as the field is moved in
the direction of pruning of the orbit. However, in gen-
eral, it is not the case that an orbit is pruned when it
changes its stability. In the bifurcation diagram of the
quadratic map only the first of the four mechanisms de-
scribed above is evident. The last two mechanisms seem
to be peculiar to the underlying dynamics of the Lorentz
gas. However, as pruning is observed also in other sorts
of symbolic dynamic systems, it is possible that features
similar to those caused by pruning in the Lorentz gas are
shared by two-dimensional maps.

We have shown that ergodicity is lost when
2.3 < <2.46, because the (¢,0) plane is composed of a
chaotic region, and two pairs of elliptical regions consist-
ing of infinitely many neutrally stable orbits, (4 10)* and
(2 8)%. In this case the measure is decomposable into at
least three regions. Ergodicity is also lost at every false
bifurcation (or orbit doubling) of stable orbits, like those
discussed in Sec. II, because the measure is once again
decomposable.

A very detailed study of a Galton-board model similar
to ours has been recently published [10], where questions
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about ergodicity and the existence of chaotic as well
periodic attractors have been addressed. The main
differences are that in their model they consider inelastic
collisions, and there is no thermostating mechanism to

remove work done by gravity. Although it is difficult to

justify the use of a thermostat in the Galton board [10],

the absence of such a mechanism makes it much more
difficult to establish a stationary state.
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FIG. 2. The upper half of the bifurcation diagram for the
discrete mapping F(¢$,0) as a function of field €, projected onto
the (g,0) plane. This diagram is symmetrized by mapping
(—6)==0. Above £=2.64 there is a single line which is the
stable (4 8) length-2 orbit, which then becomes a stable length-8
orbit. After that there are chaotic bands interspersed with
periodic windows. The separated feature at 2.3 <€ <2.46 is one
example of the neutrally stable elliptical orbit (4 10)*.
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FIG. 5. A very complicated structure of chaotic bands and
interspersed periodic windows containing further bifurcations.
Because of the small magnitude of the Lyapunov exponents in
the chaotic bands it is not possible to eliminate the possibility
that these are long chaotic transients.
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FIG. 6. A version of Fig. 5, where only one initial condition
is used at each value of the field. This shows that the false bifur-
cation at €=2.509 is a transition from a symmetric length-28
orbit to two asymmetric length-28 orbits. Using only one initial
condition we obtain only one of the asymmetric orbits, thus the
bifurcation appears to be one sided.




